

Noise Figure Increase due to Mixing of Bias Noise with Jammer

useful functions and identities
Units
Constants

Table of Contents

I. Introduction
II. Model Parameters
III. Inputs
IV. Calculations
IX. Copyright and Trademark Notice

Introduction

A simple example of the current noise output from a MOSFET driven in saturation with a large sinusoid around a DC bias. The analysis will be extended and used to analyze and design both bipolar and MOS oscillators.

Model Parameters

$\mu:=300 \cdot \frac{\mathrm{~cm}^{2}}{\mathrm{~V} \cdot \mathrm{sec}}$
$\mathrm{t}_{\mathrm{OX}}:=10 \cdot \mathrm{~nm}$
$\varepsilon_{\mathrm{r}}:=3.9$
$\varepsilon_{0}:=8.8542 \cdot 10^{-12} \frac{\mathrm{~F}}{\mathrm{~m}}$
$\mathrm{C}_{\mathrm{OX}}:=\frac{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{0}}{\mathrm{t}_{\mathrm{OX}}}$
$\mathrm{V}_{\mathrm{T}}:=0.7 \mathrm{~V}$
$\gamma:=\frac{2}{3}$
$\mathrm{T}:=(273+27) \mathrm{K}$
$\mathrm{k}:=1.3806 \cdot 10^{-23} \frac{\mathrm{~V}^{2}}{\text { ohm } \cdot \mathrm{Hz} \cdot \mathrm{K}}$

Device mobility under bias
Gate oxide thickness
Relative permittivity of silicon dioxide
Permittivity of free space
$\mathrm{C}_{\mathrm{OX}}=3.453 \frac{\mathrm{fF}}{\mu \mathrm{m}^{2}}$
$\mu \cdot \mathrm{C}_{\mathrm{OX}}=103.594 \frac{\mu \mathrm{~A}}{\mathrm{~V}^{2}}$
Gate inresnoia voitage
Noise coefficient
Operating Temperature
Boltman's constant

Inputs

$\mathrm{V}_{\mathrm{GS}}:=1.5 \mathrm{~V}$
$\mathrm{f}_{0}:=1 \mathrm{GHz}$
$\mathrm{N}:=100$
$\mathrm{A}:=200 \cdot \mathrm{mV}$

DC gate to source bias voltage
Frequency of input sine wave
Number of points in time vector
Amplitude of signal swing at gate

Calculations

$$
\begin{aligned}
& \mathrm{t}:=\frac{2}{\mathrm{f}_{0} \cdot \mathrm{~N}}, \frac{4}{\mathrm{f}_{0} \cdot \mathrm{~N}} \cdot \cdot \frac{2}{\mathrm{f}_{0}} \\
& \mathrm{v}_{\mathrm{g}}(\mathrm{t}):=\mathrm{A} \cdot \sin \left(2 \cdot \pi \cdot \mathrm{f}_{0} \cdot \mathrm{t}\right) \\
& \mathrm{I}_{\mathrm{D}}(\mathrm{t}):=\frac{\mu \cdot \mathrm{C}_{\mathrm{OX}}}{2} \cdot \frac{\mathrm{~W}}{\mathrm{~L}} \cdot\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}+\mathrm{v}_{\mathrm{g}}(\mathrm{t})\right)^{2} \\
& \mathrm{~g}_{\mathrm{m}}(\mathrm{t}):=\sqrt{2 \cdot \mu \cdot \mathrm{C}_{\mathrm{OX}} \cdot \frac{\mathrm{~W}}{\mathrm{~L}} \cdot \mathrm{I}_{\mathrm{D}}(\mathrm{t})} \\
& \mathrm{g}_{\mathrm{m}}(\mathrm{t}):=\mu \cdot \mathrm{C}_{\mathrm{OX}} \cdot \frac{\mathrm{~W}}{\mathrm{~L}} \cdot\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}-\mathrm{v}_{\mathrm{g}}(\mathrm{t})\right) \\
& \mathrm{v}_{\mathrm{n}}(\mathrm{t}):=4 \cdot \mathrm{k} \cdot \mathrm{~T} \cdot \gamma \cdot \frac{1}{\mathrm{~g}_{\mathrm{m}}(\mathrm{t})} \\
& \mathrm{I}_{\mathrm{spn}}(\mathrm{t}):=\frac{\mu \cdot \mathrm{C}_{\mathrm{OX}}}{2} \cdot \frac{\mathrm{~W}}{\mathrm{~L}} \cdot\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}+\mathrm{v}_{\mathrm{g}}(\mathrm{t})+\mathrm{v}_{\mathrm{n}}(\mathrm{t})\right)^{2}
\end{aligned}
$$

Time vector
Large input signal
Large signal current in the device.

Time varying small signal transconductance
transconductance written another way

Input referred device thermal noise
Current of signal plus noise

Expansion of current noise:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{spn}}(\mathrm{t}):=\frac{\mu \cdot \mathrm{C}_{\mathrm{OX}}}{2} \cdot \frac{\mathrm{~W}}{\mathrm{~L}} \cdot\left[\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}+\mathrm{A} \cdot \sin \left(2 \cdot \pi \cdot \mathrm{f}_{0} \cdot \mathrm{t}\right)+4 \cdot \mathrm{k} \cdot \mathrm{~T} \cdot \gamma \cdot \frac{1}{\mu \cdot \mathrm{C}_{\mathrm{OX}} \cdot \frac{\mathrm{~W}}{\mathrm{~L}} \cdot \mu \cdot \mathrm{C}_{\mathrm{OX}} \cdot \frac{\mathrm{~W}}{\mathrm{~L}} \cdot\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}+\mathrm{A} \cdot \sin \left(2 \cdot \pi \cdot \mathrm{f}_{0} \cdot \mathrm{t}\right)\right)^{2}}\right]^{2} \\
& \mathrm{I}_{0}:=\frac{\mu \cdot \mathrm{C}_{\mathrm{OX}}}{2} \cdot \frac{\mathrm{~W}}{\mathrm{~L}} \cdot\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)^{2} \\
& \mathrm{~V}_{\text {Dsat }}:=\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}} \\
& \mathrm{I}_{\text {spn }}(\mathrm{t}):=\mathrm{I}_{0} \cdot\left[1+\frac{\mathrm{A}}{\mathrm{~V}_{\text {Dsat }}} \cdot \sin \left(2 \cdot \pi \cdot \mathrm{f}_{0} \cdot \mathrm{t}\right)+\frac{4 \cdot \mathrm{k} \cdot \mathrm{~T} \cdot \gamma}{\mathrm{~V}_{\text {Dsat }}} \cdot \frac{1}{\mu \cdot C_{\mathrm{OX}} \cdot \frac{\mathrm{~W}}{\mathrm{~L}} \cdot \mathrm{I}_{0} \cdot\left(1+\frac{\mathrm{A}}{\mathrm{~V}_{\text {Dsat }}} \cdot \sin \left(2 \cdot \pi \cdot \mathrm{f}_{0} \cdot \mathrm{t}\right)\right)^{2}}\right]^{2} \\
& \mathrm{I}_{\text {spn }}(\mathrm{t}):=\mathrm{I}_{0} \cdot\left(1+\frac{\mathrm{A}}{\mathrm{~V}_{\text {Dsat }}} \cdot \sin \left(2 \cdot \pi \cdot \mathrm{f}_{0} \cdot \mathrm{t}\right)+\frac{\mathrm{v}_{\mathrm{n}}(\mathrm{t})}{\mathrm{V}_{\text {Dsat }}}\right)^{2}
\end{aligned}
$$

Expand and drop the $\mathrm{vn}(\mathrm{t}) 2$ term (noise sauare is negligible

$$
I_{\text {spn }}(t):=I_{0} \cdot\left(1+4 \cdot \frac{A}{V_{\text {Dsat }}} \cdot \sin \left(\pi \cdot f_{0} \cdot t\right) \cdot \cos \left(\pi \cdot f_{0} \cdot t\right)+2 \cdot \frac{V_{n}(t)}{V_{\text {Dsat }}}+4 \cdot \frac{A^{2}}{V_{\text {Dsat }}{ }^{2}} \cdot \sin \left(\pi \cdot f_{0} \cdot t\right)^{2} \cdot \cos \left(\pi \cdot f_{0} \cdot t\right)^{2}+4 \cdot \frac{A}{V_{\text {Dsat }}^{2}} \cdot \sin \left(\pi \cdot f_{0} \cdot t\right) \cdot \cos \right.
$$

Trignometric substitution:

$$
\begin{aligned}
& \sin \left(\pi \cdot f_{0} \cdot t\right) \cdot \cos \left(\pi \cdot f_{0} \cdot t\right)=\frac{1}{2} \cdot \sin \left(2 \cdot \pi \cdot f_{0} \cdot t\right) \quad \operatorname{and}\left(2 \cdot \pi \cdot f_{0} \cdot t\right)^{2}=\frac{1}{2} \cdot\left(1-\cos \left(2 \cdot \pi \cdot 2 \cdot f_{0} \cdot t\right)\right) \\
& I_{\text {spn }}(t):=I_{0} \cdot\left[1+2 \cdot \frac{A}{V_{\text {Dsat }}} \cdot \sin \left(2 \cdot \pi \cdot f_{0} \cdot t\right)+2 \cdot \frac{v_{n}(t)}{V_{\text {Dsat }}}+\frac{A^{2}}{V_{\text {Dsat }} 2} \cdot \frac{1}{2} \cdot\left(1-\cos \left(2 \cdot \pi \cdot 2 \cdot f_{0} \cdot t\right)\right)+2 \cdot \frac{A}{V_{\text {Dsat }}} \cdot \sin \left(2 \cdot \pi \cdot f_{0} \cdot t\right) \cdot \frac{v_{n}(t)}{v_{\text {Dsat }}}\right]
\end{aligned}
$$

Substitution

$$
\begin{aligned}
g_{m 0}:= & \frac{2 \cdot I_{0}}{V_{\text {Dsat }}} \\
I_{\text {spn }}(t):= & I_{0} \cdot\left(1+\frac{A^{2}}{V_{\text {Dsat }}^{2}} \cdot \frac{1}{2}\right)+\left(g_{m 0} \cdot A \cdot \sin \left(2 \cdot \pi \cdot f_{0} \cdot t\right)\right)-\frac{I_{0} \cdot A^{2}}{V_{\text {Dsat }}^{2}} \cdot \frac{1}{2} \cdot \cos \left(2 \cdot \pi \cdot 2 \cdot f_{0} \cdot t\right) \ldots \\
& +g_{m 0} \cdot v_{n}(t)+g_{m 0} \cdot A \cdot \sin \left(2 \cdot \pi \cdot f_{0} \cdot t\right) \cdot \frac{v_{n}(t)}{V_{\text {Dsat }}}
\end{aligned}
$$

This expression represents both the large signal currents and the noise currents. The large signal currrent by itself is:

$$
\mathrm{I}_{\mathrm{D}}(\mathrm{t}):=\mathrm{I}_{0} \cdot\left(1+\frac{\mathrm{A}^{2}}{\mathrm{~V}_{\text {Dsat }}^{2}} \cdot \frac{1}{2}\right)+\left(\mathrm{g}_{\mathrm{m} 0} \cdot \mathrm{~A} \cdot \sin \left(2 \cdot \pi \cdot \mathrm{f}_{0} \cdot \mathrm{t}\right)\right)-\left(\frac{\mathrm{I}_{0} \cdot \mathrm{~A}^{2}}{\mathrm{~V}_{\text {Dsat }}{ }^{2}} \cdot \frac{1}{2} \cdot \cos \left(2 \cdot \pi \cdot 2 \cdot \mathrm{f}_{0} \cdot \mathrm{t}\right)\right)
$$

which consists of three components: A DC (or time average) component, the fundamental input component times the small signal transconductance and a second harmonic distortion component. The noise current terms are time varying are represented below

$$
I_{n}(t):=g_{m 0} \cdot v_{n}(t)+g_{m} 0 \cdot A \cdot \sin \left(2 \cdot \pi \cdot f_{0} \cdot t\right) \cdot \frac{v_{n}(t)}{V_{\text {Dsat }}}
$$

This equation contains two components. The first is a linear cyclostationary white noise component. If viewed under a spectrum analyzer at a rate much less than the input oscillation frequency, the time vary component averages out and the DC component is left

$$
\begin{array}{ll}
\mathrm{g}_{\mathrm{m}}(\mathrm{t}):=\sqrt{2 \cdot \mu \cdot \mathrm{C}_{\mathrm{OX}} \cdot \frac{\mathrm{~W}}{\mathrm{~L}} \cdot \mathrm{I}_{\mathrm{D}}(\mathrm{t})} & \text { Time varying small signal transconductance } \\
\mathrm{g}_{\mathrm{m}}(\mathrm{t}):=\mu \cdot \mathrm{C}_{\mathrm{OX}} \cdot \frac{\mathrm{~W}}{\mathrm{~L}} \cdot\left(\mathrm{v}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}-\mathrm{A} \cdot \sin \left(2 \cdot \pi \cdot \mathrm{f}_{0} \cdot \mathrm{t}\right)\right) & \\
\mathrm{v}_{\mathrm{n}}(\mathrm{t}):=4 \cdot \mathrm{k} \cdot \mathrm{~T} \cdot \gamma \cdot \frac{1}{\mathrm{~g}_{\mathrm{m}}(\mathrm{t})} & \text { Input referred device thermal noise } \\
\mathrm{v}_{\mathrm{n}}(\mathrm{t}):=4 \cdot \mathrm{k} \cdot \mathrm{~T} \cdot \gamma \cdot \frac{1}{\mu \cdot \mathrm{C}_{\mathrm{OX}} \cdot \frac{\mathrm{~W}}{\mathrm{~L}} \cdot\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}-\mathrm{A} \cdot \sin \left(2 \cdot \pi \cdot \mathrm{f}_{0} \cdot \mathrm{t}\right)\right)} &
\end{array}
$$

The time average voltage is

$$
\begin{aligned}
& \mathrm{v}_{\text {nave }}:=4 \cdot \mathrm{k} \cdot \mathrm{~T} \cdot \gamma \cdot \frac{1}{\mu \cdot \mathrm{C}_{\mathrm{OX}} \cdot \frac{\mathrm{~W}}{\mathrm{~L}}} \cdot \int_{0}^{2 \cdot \pi} \frac{1}{\left(\mathrm{v}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}-\mathrm{A} \cdot \sin (\mathrm{x})\right.} \mathrm{dx} \\
& \mathrm{v}_{\text {nave }}:=\frac{4 \cdot \mathrm{k} \cdot \mathrm{~T} \cdot \gamma}{\mu \cdot \mathrm{C}_{\mathrm{OX}} \cdot \frac{\mathrm{~W}}{\mathrm{~L}} \cdot 2 \cdot \pi \cdot \frac{\operatorname{csgn}\left[\left(\mathrm{v}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right) \cdot \sqrt{\left.\left(\mathrm{v}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)^{2}-\mathrm{A}^{2}\right]}\right.}{\sqrt{\left(\mathrm{v}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)^{2}-\mathrm{A}^{2}}}} \\
& \mathrm{v}_{\text {nave }}:=\frac{4 \cdot \mathrm{k} \cdot \mathrm{~T} \cdot \gamma}{\mu \cdot \mathrm{C}_{\mathrm{OX}} \cdot \frac{\mathrm{~W}}{\mathrm{~L}} \cdot\left(\mathrm{v}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)}
\end{aligned}
$$

Or better written as the output referred current noise:

$$
\mathrm{i}_{\mathrm{n}}(\mathrm{t}):=4 \cdot \mathrm{k} \cdot \mathrm{~T} \cdot \gamma \cdot \mu \cdot \mathrm{C}_{\mathrm{OX}} \cdot \frac{\mathrm{~W}}{\mathrm{~L}} \cdot\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}-\mathrm{A} \cdot \sin \left(2 \cdot \pi \cdot \mathrm{f}_{0} \cdot \mathrm{t}\right)\right)
$$

The timu urnage ve uno io

$$
\mathrm{i}_{\text {nave }}:=4 \cdot \mathrm{k} \cdot \mathrm{~T} \cdot \gamma \cdot \mu \cdot \mathrm{C}_{\mathrm{OX}} \cdot \frac{\mathrm{~W}}{\mathrm{~L}} \cdot\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right) \quad \mathrm{v}_{\text {nave }}=4 \cdot \mathrm{k} \cdot \mathrm{~T} \cdot \gamma \cdot \mathrm{~g}_{\mathrm{m} 0}+\frac{\mathrm{K}}{\mathrm{f}}
$$

which is the same without the large signal input. The last noise term represents a mixing term:

$$
\cos \left(2 \cdot \pi \cdot \mathrm{f}_{1}\right) \cdot \cos \left(2 \cdot \pi \cdot \mathrm{f}_{2}\right)=\frac{1}{n} \cdot\left(\cos \left(\mathrm{f}_{1}+\mathrm{f}_{2}\right)+\cos \left(\mathrm{f}_{1}-\mathrm{f}_{2}\right)\right)
$$

$$
\mathrm{g}_{\mathrm{m} 0} \cdot \mathrm{~A} \cdot \sin \left(2 \cdot \pi \cdot \mathrm{f}_{0} \cdot \mathrm{t}\right) \cdot \frac{\mathrm{v}_{\mathrm{n}}(\mathrm{t})}{\mathrm{V}_{\mathrm{Dsat}}}
$$

If the noise is white than noise from one location replaces noise from another location and the resultant is a white noise floor. Since noise is uncorrelated from one frequency point to the next it will add uncorrelated to the first combonent of noise

$$
\mathrm{i}_{\text {nwhite }}(\mathrm{f}):=4 \cdot \mathrm{k} \cdot \mathrm{~T} \cdot \gamma \cdot \mathrm{~g}_{\mathrm{m} 0} \cdot\left(1+\frac{\mathrm{A}}{\mathrm{~V}_{\text {Dsat }}}\right)
$$

But, any low frequency noise components such as $1 /$ f noise will noise mix around the carrier. $1 / 2$ will go to one side of the carrier and $1 / 2$ will go to the other side of the carrier

$$
i_{n_{1} 1} f(f):=g_{m 0} \cdot \frac{A}{V_{\text {Dsat }}} \cdot\left[\frac{K}{2 \cdot\left(f+f_{0}\right)}+\frac{K}{2 \cdot\left(f-f_{0}\right)}\right]
$$

The net result is:

1. The output current increases by $\left(1+\mathrm{A}^{2} / \mathrm{V}_{\text {Dsat }}{ }^{2 / 2}\right)$
2. The output white current noise increases by $(1+\mathrm{A} / \mathrm{VDsat})$
3. The output $1 / \mathrm{f}$ noise is simply $\mathrm{g}_{\mathrm{m} 0} * \mathrm{~K} / \mathrm{f}$
4. Two new $1 / \mathrm{f}$ terms are added: $\mathrm{g}_{\mathrm{m} 0} * \mathrm{~A} / \mathrm{V}_{\text {Dsat }} * \mathrm{~K} / 2 *\left(1 /\left(\mathrm{f}-\mathrm{f}_{0}\right)+1 /\left(\mathrm{f}-\mathrm{f}_{0}\right)\right)$
5. The fundamental exists: $\mathrm{g}_{\mathrm{m} 0} * \mathrm{v}_{\mathrm{i}}$
6. A second harmonic existis: $\mathrm{g}_{\mathrm{m} 0} * \mathrm{~A} / \mathrm{V}_{\text {Dsat }} / 2 * \mathrm{v}_{\mathrm{i}}$

Copyright and Trademark Notice

All software and other materials included in this document are protected by copyright, and are owned or controlled by Circuit Sage.

The routines are protected by copyright as a collective work and/or compilation, pursuant to federal copyright laws, international conventions, and other copyright laws. Any reproduction, modification, publication, transmission, transfer, sale, distribution, performance, display or exploitation of any of the routines, whether in whole or in part, without the express written permission of Circuit Sage is prohibited.

